The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins.

نویسندگان

  • Domenico Lupo
  • Xiao-Dan Li
  • Anne Durand
  • Takashi Tomizaki
  • Baya Cherif-Zahar
  • Giorgio Matassi
  • Mike Merrick
  • Fritz K Winkler
چکیده

The Rhesus (Rh) proteins are a family of integral membrane proteins found throughout the animal kingdom that also occur in a number of lower eukaryotes. The significance of Rh proteins derives from their presence in the human red blood cell membrane, where they constitute the second most important group of antigens used in transfusion medicine after the ABO group. Rh proteins are related to the ammonium transport (Amt) protein family and there is considerable evidence that, like Amt proteins, they function as ammonia channels. We have now solved the structure of a rare bacterial homologue (from Nitrosomonas europaea) of human Rh50 proteins at a resolution of 1.3 A. The protein is a trimer, and analysis of its subunit interface strongly argues that all Rh proteins are likely to be homotrimers and that the human erythrocyte proteins RhAG and RhCE/D are unlikely to form heterooligomers as previously proposed. When compared with structures of bacterial Amt proteins, NeRh50 shows several distinctive features of the substrate conduction pathway that support the concept that Rh proteins have much lower ammonium affinities than Amt proteins and might potentially function bidirectionally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution and functional characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea.

The family of ammonia and ammonium channel proteins comprises the Amt proteins, which are present in all three domains of life with the notable exception of vertebrates, and the homologous Rh proteins (Rh50 and Rh30) that have been described thus far only in eukaryotes. The existence of an RH50 gene in bacteria was first revealed by the genome sequencing of the ammonia-oxidizing bacterium Nitro...

متن کامل

Structure of the Nitrosomonas europaea Rh protein.

Amt/MEP/Rh proteins are a family of integral membrane proteins implicated in the transport of NH3, CH(2)NH2, and CO2. Whereas Amt/MEP proteins are agreed to transport ammonia (NH3/NH4+), the primary substrate for Rh proteins has been controversial. Initial studies suggested that Rh proteins also transport ammonia, but more recent evidence suggests that they transport CO2. Here we report the fir...

متن کامل

Potentials of mean force and permeabilities for carbon dioxide, ammonia, and water flux across a Rhesus protein channel and lipid membranes.

As a member of the ubiquitous ammonium transporter/methylamine permease/Rhesus (Amt/MEP/Rh) family of membrane protein channels, the 50 kDa Rhesus channel (Rh50) has been implicated in ammonia (NH(3)) and, more recently, also in carbon dioxide (CO(2)) transport. Here we present molecular dynamics simulations of spontaneous full permeation events of ammonia and carbon dioxide across Rh50 from Ni...

متن کامل

The Genome of the Ammonia Oxidizing Bacterium Nitrosomonas europaea: Iron Metabolism and Barriers to Heterotrophy

Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source (3). As a nitrifier, it is an important participant in the N cycle, which can also influence the C cycle. The genome sequence of N. europaea has been annotated and consists of approximately 2460 protein-encoding genes (1). We are continuing to use the genome sequence to explore the geneti...

متن کامل

Multiple copies of genes coding for electron transport proteins in the bacterium Nitrosomonas europaea.

The genome of Nitrosomonas europaea contains at least three copies each of the genes coding for hydroxylamine oxidoreductase (HAO) and cytochrome c554. A copy of an HAO gene is always located within 2.7 kb of a copy of a cytochrome c554 gene. Cytochrome P-460, a protein that shares very unusual spectral features with HAO, was found to be encoded by a gene separate from the HAO genes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 49  شماره 

صفحات  -

تاریخ انتشار 2007